Day 1 Lecture 2: Basic concepts of compartmental models

Short course on modelling infectious disease dynamics in R

Ankara, Türkiye, September 2025

Dr Juan F Vesga

Aims of the session

- To Understand how disease models are designed
- Review concepts of probabilities, rates and competing hazards
- Understand the assumptions behind compartmental models

Checklist for designing a disease model

- 1) Describe the natural course of disease
- 2) Identify the necessary transitions between compartments
- 3) Interpret these transitions and find the relevant data to estimate the parameters
- 4) Review your research question and adapt your model complexity accordingly
- 5) Code your model!

A simple example

A cohort model

- How do we specify rates of transitions?
- How multiple rates affect a compartment?

A cohort model

Infected

$$\frac{dI}{dt} = -\gamma I(t)$$

$$\frac{dR}{dt} = \gamma I(t)$$

- The rate of flow out of compartment I is proportional to the number of people on I
- γ is the proportionality constant
- We call γ a constant hazard
- A hazard is the event rate at a specific time t

A cohort model

Infected

$$\frac{dI}{dt} = -\gamma I(t)$$

$$\frac{dR}{dt} = \gamma I(t)$$

- In our cohort γ is the recovery rate
- The larger γ is, the quicker they recover
- This means γ must be expressed in units of inverse time day⁻¹
- An average recovery rate of 10 days = 0.1 day⁻¹ = 1/10

Infected

$$\frac{dI}{dt} = -\gamma I(t)$$

$$\frac{dR}{dt} = \gamma I(t)$$

- An initial cohort of 1000 people infected
- A recovery rate of 0.1 day⁻¹ (10 days)
- When will 50% of infected be recovered?

Infected

Recovered

Solution

$$\frac{dI}{dt} = -\gamma I(t) \qquad \longrightarrow \qquad I = I_0 e^{-\gamma t}$$

$$\frac{dR}{dt} = \gamma I(t) \quad \Longrightarrow \quad R = I_0 (1 - e^{-\gamma t})$$

- An initial cohort of 1000 people infected
- A recovery rate of 0.1 day⁻¹ (10 days)
- When will 50% of infected be recovered?

Infected Recovered

Solution

- An initial cohort of 1000 people infected
- A recovery rate of 0.1 day⁻¹ (10 days)
- When will 50% of infected be

$$\frac{dI}{dt} = -\gamma I(t) \qquad \Longrightarrow I = 1000e^{-0.1(10)} \text{ recovered?}$$

$$\frac{dR}{dt} = \gamma I(t) \implies R = 1000(1 - e^{-0.1(10)})$$

Recovery rate of 10 days

Recovery rate of 2 days. Much quicker!

Behaviour of the exponential distribution

- For γ = 0.1 , we can say the mean infectious period is 10 days
- For γ = 0.5 , we can say the mean infectious period is 2 days

Behaviour of the exponential distribution

- The time spent in *I* follows an exponential distribution with exponential parameter
- The mean of that distribution is $1/\gamma$, which is in our case the mean infectious period (in days)
- The shorter the infectious period, the larger (quicker) the recovery rate!

Competing Hazards

Infected

Recovered

 Let's add some complexity by adding a mortality rate

$$\frac{dI}{dt} = -\gamma I(t)$$

$$\frac{dR}{dt} = \gamma I(t)$$

Competing Hazards

Infected

$$\frac{dI}{dt} = -(\gamma + \mu)I(t)$$

$$\frac{dR}{dt} = \gamma I(t) \qquad \frac{dM}{dt} = \mu R(t)$$

- Let's add some complexity by adding a mortality rate μ
- More than one event can flow out of *I* compartment.
- This is what we call competing hazards: μ and γ

Competing Hazards

Infected Recovered

$$\frac{dI}{dt} = -(\gamma + \mu)I(t)$$

$$\frac{dR}{dt} = \gamma I(t) \qquad \frac{dM}{dt} = \mu R(t)$$

- if $\mu > \gamma$, means more people die before they recover (e.g, Ebola)
- This means that for a particular compartment, two hazard rates are competing
- We need to account for that when we define the value of our rates

Competing Hazards: CFR

- The case fatality rate is the proportion of people that die before they recover.
- It can be expressed as:

$$CFR = \mu/(\gamma + \mu)$$

Similarly, the survival rate is

survival =
$$\gamma/(\gamma + \mu)$$

Competing Hazards: estimate µ from CFR

Disease	Pathogen	Eradication status	Deaths per year (in most recent year)	Case fatality rate (if untreated)
Smallpox	Variola virus	eradicated	0	±30%
Rinderpest	Rinderpest virus	eradicated	0	up to 100%
Polio	Poliovirus	eradication under way	0	<0.5%
Guinea worm	Guinea worm (nematode)	eradication under way	not deadly	0%
Yaws	Treponema pallidum (bacterium)	eradication under way	not deadly	0%
Rabies	Lyssavirus	global elimination under way	13,289 (2016)	100%
Tuberculosis	Mycobacterium tuberculosis (bacterium)	possibly eradicable in the future	1.21 million (2016)	70%
HIV/AIDS	Human immunodeficiency virus	possibly eradicable in the future	1.03 million (2016)	up to 100%
Malaria	Plasmodium (unicellular parasite)	possibly eradicable in the future	0.72 million (2016)	±0.3%

What we should know by now

- What are compartmental models
- How we use ODEs to write these models
- What are hazard rates and how can be interpreted
- What are competing hazards and why are these important.
- What is the case fatality rate (CFR)