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Aims of the session

« Understand what is stochasticity and why it is important

« Learn concepts of epidemic persistence and some important consequences of stochasticity on
disease dynamics, like:

« Variability
 Persistence and critical community size
« Fade out probability



What is stochasticity?

Deterministic models
O try to capture ‘average’ behaviour.
d ...but in reality transmission/demographic processes are random.

Stochasticity
1 Randomness.

O Disease transmission really a process of discrete, random infection/recovery and
other events.

[ Stochastic models generate ‘random’ output, so many independent runs are
needed to calculate average behaviour, variances, correlations, etc.

Complicating factors
0 Heterogeneity (behavioural, spatial, temporal).



Stochastic or deterministic?

« A stochastic model consists of a population and a number of event
types.

« The population may consist of individuals or of sub-populations in
given states. E.g. susceptible, infected, ‘recovered’, etc.

« Event types could be infection, recovery, death, etc.

« Simple basic idea - in any time interval there is a certain probability of
each type of event occurring (e.g. birth/death).

« Deterministic models approximate by saying that in any time interval,
the mean number of events of any particular type occur. They also
assume population sizes to be real, not integer numbers.



A simple birth-death process (1)

Deterministically

dN
E=0)N—ﬂN - with solution [N (#) = N, exp| (@ — u)1 |

For o>u, N grows exponentially. For @ <y, N decreases
asymptotically to zero. For ® =y, N remains constant.

Here N(t) represents the average 50
number of individuals alive at

time t. Should be careful in

interpreting it as the real number =
of people alive - since the model

in that case tells you that a

fraction of an individual can be

alive, and a fraction dead. 0 5 4 6 8



A simple birth-death process (2)

Stochastically

We need a complete description of the stochastic model so we
can simulate it. For the present case:

Population: N identical individuals.

Name | What happens to Rate/individua
population I
Birth N >N+ 1 o

Death N->N-1 m




A simple birth-death process (3)

Stochastically

Between time t at time t+dt a short time later, one of two events
might happen:

* A birth - with probability odt per individual
* A death - with probability pdt per individual

Stochastic simulation involves picking these events randomly to
generate a single realisation:
60




Population size and stochasticity
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Stochasticity and persistence



What is persistence?

* The ability of a disease to remain endemic.

« Deterministic models tell us RO>1 is only criterion for
persistence.

* |n fact, random fluctuations often drive diseases to extinction.
« Population size, N, a key issue (& space).

 Stochastic effects can give fundamentally different dynamics
 especially for cyclical epidemics!
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Example: Measles dynamics
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Deterministic model of Measles

 Seasonally forced model -
transmission varies annually.

 Equivalent of equilibrium is limit
cycle - sustained incidence
oscillations - not necessarily of
same period as forcing.

» Cycles completely regular.
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Effect of stochasticity
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Effect of stochasticity on SEIR dynamics

Phase space plots of biennial epidemics:
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Critical Community Size

CCS = minimum population size at which fadeouts become rare.
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Back to Persistence

» Epidemic prediction/control strategy design needs to take account
of stochastic effects.

« Different pathogens adopt different strategies to persist.

« Key requirement is to keep prevalence of infectives, Y, at level
where extinction becomes unlikely by chance.

Extinction
likely
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A simple criterion for disease
persistence

 Given random fluctuations are approximately Poisson, their variance is
proportional to N.

e j.e. fluctuations have SD ~ N
« A disease goes extinct when the number of infectives (Y) falls to O.
« A crude rule of thumb is therefore that extinction will be unlikely if E[Y]>VN.

« Thus diseases have an advantage if they can maintain the highest possible
numbers of infectives for a given population size.

* Infectious period and immunity are therefore key.
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Critical community size

CCS = minimum population size at which fadeouts become rare.
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Data: Bolker and Grenfell Phil Trans Roy Soc 1995



Mechanisms for enhancing persistence

- Antigenic variation (or not generating permanent host immunity) clearly gives a large
advantage - which is why STDs are found in even very small communities.

 SIR diseases with short infectious periods like measles, rubella etc. need very large

(>500,000) populations to be able to persist - otherwise they burn out the susceptible
population too quickly.

« Along infectious period (or disease recrudence, like chickenpox) compared with host
lifespan is also an effective strategy - it pays to be chronic.

« Disease like influenza fall between the SIR/SIS camps - antigenic drift reciuires fairly
large populations to happen, but does allow disease persistence in smaller
populations than measles.

« Not just an abstract issue - critical to evaluations of how realistic disease eradication
programmes might be.
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Fade out probability
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* In a deterministic model, if R, > 1 a seeded epidemic will never fade
out. In reality, an epidemic may never take off due to chance events,
for example the first infected case may never contact other
individuals.

« Stochastic models allow epidemic fade out (i.e. | = 0).

« For an epidemic (R, > 1) beginning with a single case in a large
population, it can be shown that:

Fade out probability = é
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The importance of stochasticity during
outbreaks

Proportion of population

If the initial seeding of a new outbreak only infects very low numbers of people
(1 or 2), then the probability of disease extinction by random chance in the
establishment phase is significant, and the rate of early spread is quite variable.
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Stochasticity also important in the tail of an epidemic
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The impact of reduced MMR uptake:
an example of the use of stochastic models

* The current concern about MMR uptake levels makes predicting the
likelihood of a large measles outbreak a priority.

» Can data on the current small outbreaks seen in the last few years
tell us anything?
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Inferring R from outbreak size distributions

 For sub-critical transmission, possible to
estimate R from the distribution of outbreak
sizes (m=2/(1-R), where m is mean outbreak
size).

 This analysis shows a significantly increased
level of transmission in the period 1999-2002
compared with 1995-98.

* R is now dangerously close to 1 — meaning a
major measles outbreak is due any time.

* This is an intrinsically stochastic analysis —
since outbreak size is a random variable.
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Extra material

some maths for persistence and SIR/SIS



SIR/SIS persistence criteria

A lot can be inferred from just examining the relationship between

prevalence and epidemiological parameters.

SIS (STDs etc)

X:yN—MX—ﬁXYHﬁ’

YzﬁXYﬂUﬁ@Y

SIR (measles etc)

N

N
Z=vY-uZ

X:yN;yX—ﬂXY
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X*
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Herd immunity threshold S< N/RO
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SIR/SIS persistence criteria

What is value of N above which Y*>\N? 2 N_,

SIS (STDs etc) SIR (measles etc)
1 e v ]
Ncrit = 2
1— 1 N, == H = ~ Smillion for measles
R, l—i
~100 for STD with R, =11 Ry |
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