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Aims of the session

• Understand what is stochasticity  and why it is important

• Learn concepts of epidemic persistence and some important consequences of stochasticity on 
disease dynamics, like:

• Variability

• Persistence and critical community size

• Fade out probability
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What is stochasticity?

Deterministic models
❑ try to capture ‘average’ behaviour.

❑ …but in reality transmission/demographic processes are random.

Stochasticity
❑ Randomness. 

❑ Disease transmission really a process of discrete, random infection/recovery and 
other events.

❑ Stochastic models generate ‘random’ output, so many independent runs are 
needed to calculate average behaviour, variances, correlations, etc.

Complicating factors
❑ Heterogeneity (behavioural, spatial, temporal).
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Stochastic or deterministic?

•  A stochastic model consists of a population and a number of event 
types. 

• The population may consist of individuals or of sub-populations in 
given states. E.g. susceptible, infected, ‘recovered’, etc. 

• Event types could be infection, recovery, death, etc. 

• Simple basic idea – in any time interval there is a certain probability of 
each type of event occurring (e.g. birth/death).

•  Deterministic models approximate by saying that in any time interval, 
the mean number of events of any particular type occur. They also 
assume population sizes to be real, not integer numbers.
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( )0( ) expN t N t  = − - with solution 
dN

N N
dt

 = −

Deterministically

For >μ, N grows exponentially. For  < μ, N decreases 

asymptotically to zero. For  = μ, N remains constant.
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Here N(t) represents the average 
number of individuals alive at 
time t. Should be careful in 
interpreting it as the real number 
of people alive – since the model 
in that case tells you that a 
fraction of an individual can be 
alive, and a fraction dead.
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A simple birth-death process (1)
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We need a complete description of the stochastic model so we 
can simulate it. For the present case:

Population: N identical individuals.

Name What happens to 
population

Rate/individua
l

Birth N →N + 1  

Death N →N - 1 m

Stochastically

A simple birth-death process (2)
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Stochastically
Between time t at time t+dt a short time later, one of two events 
might happen:

• A birth – with probability dt per individual

• A death – with probability μdt per individual

Stochastic simulation involves picking these events randomly to 
generate a single realisation:
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A simple birth-death process (3)
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Population size and stochasticity
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Stochasticity and persistence
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What is persistence?

• The ability of a disease to remain endemic.

•  Deterministic models tell us R0>1 is only criterion for 
persistence.

•  In fact, random fluctuations often drive diseases to extinction.

•  Population size, N, a key issue (& space).

•  Stochastic effects can give fundamentally different dynamics
•  especially for cyclical epidemics!
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Example: Measles dynamics

UK New YorkCopenhagen

Predominantly biennial cycles, but strong annual & triennial 
components
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Deterministic model of Measles

• Seasonally forced model – 
transmission varies annually.

• Equivalent of equilibrium is limit 
cycle - sustained incidence 
oscillations - not necessarily of 
same period as forcing.

• Cycles completely regular. 0
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• Disease extinction likely  by 
random chance when number 
of infectives falls to very low 
numbers.

• So extinction more frequent as 
population size decreases.

Effect of stochasticity
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Effect of stochasticity on SEIR dynamics
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CCS = minimum population size at which fadeouts become rare.

Critical Community Size 
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• Epidemic prediction/control strategy design needs to take account 
of stochastic effects.

• Different pathogens adopt different strategies to persist.

• Key requirement is to keep prevalence of infectives, Y, at level 
where extinction becomes unlikely by chance.

Y* Y*

Extinction 

likely

Back to Persistence
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A simple criterion for disease 
persistence
• Given random fluctuations are approximately Poisson, their variance is 

proportional to N.

• i.e. fluctuations have SD ~ N

• A disease goes extinct when the number of infectives (Y) falls to 0.

• A crude rule of thumb is therefore that extinction will be unlikely if  E[Y]>N.

• Thus diseases have an advantage if they can maintain the highest possible 
numbers of infectives for a given population size.

• Infectious period and immunity are therefore key.
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CCS = minimum population size at which fadeouts become rare.

Data: Bolker and Grenfell Phil Trans Roy Soc 1995

Critical community size
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Mechanisms for enhancing persistence

• Antigenic variation (or not generating permanent host immunity) clearly gives a large 
advantage – which is why STDs are found in even very small communities.

• SIR diseases with short infectious periods like measles, rubella etc. need very large 
(>500,000) populations to be able to persist – otherwise they burn out the susceptible 
population too quickly.

• A long infectious period (or disease recrudence, like chickenpox) compared with host 
lifespan is also an effective strategy – it pays to be chronic.

• Disease like influenza fall between the SIR/SIS camps – antigenic drift requires fairly 
large populations to happen, but does allow disease persistence in smaller 
populations than measles.

• Not just an abstract issue – critical to evaluations of how realistic disease eradication 
programmes might be.
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• In a deterministic model, if R0 > 1 a seeded epidemic will never fade 
out. In reality, an epidemic may never take off due to chance events, 
for example the first infected case may never contact other 
individuals.

• Stochastic models allow epidemic fade out (i.e. I = 0).

• For an epidemic (R0 > 1) beginning with a single case in a large 
population, it can be shown that:
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Fade out probability  

R
=

Fade out probability
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Deterministic

Stochastic

If the initial seeding of a new outbreak only infects very low numbers of people 
(1 or 2), then the probability of disease extinction by random chance in the 
establishment phase is significant, and the rate of early spread is quite variable.

Stochasticity also important in the tail of an epidemic
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The importance of stochasticity during 
outbreaks
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• The current concern about MMR uptake levels makes predicting the 
likelihood of a large measles outbreak a priority.

• Can data on the current small outbreaks seen in the last few years 
tell us anything?

Source:[Jansen, V.A.A. et al, Science (2002), 301:804]

The impact of reduced MMR uptake:
an example of the use of stochastic models
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• For sub-critical transmission, possible to 

estimate R from the distribution of outbreak 

sizes (m=2/(1-R), where m is mean outbreak 

size).

• This analysis shows a significantly increased 

level of transmission in the period 1999-2002 

compared with 1995-98.

• R is now dangerously close to 1 – meaning a 

major measles outbreak is due any time.

• This is an intrinsically stochastic analysis – 

since outbreak size is a random variable.

Inferring R from outbreak size distributions
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Extra material
some maths for persistence and SIR/SIS
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A lot can be inferred from just examining the relationship between 
prevalence and epidemiological parameters. 

Herd immunity threshold S< N/R0

SIR/SIS persistence criteria
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What is value of N above which Y*> N ?   ➔ Ncrit
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