Day 3 Lecture 3: Assessing model uncertainty and calibration

Short course on modelling infectious disease dynamics in R

Ankara, Türkiye, September 2025

Dr Juan F Vesga

Aims of the session

- Understand the sources of uncertainty
- Understand the importance of communicating uncertainty
- Learn main methods for addressing model uncertainty

The nature of the problem

Raw data: incidence, serological data, etc. or parameter values from other studies.

Deterministic or stochastic

Property or statistic of the system (Contact rate, R_0 , etc.)

Uncertainty

Sensitivity

For a deterministic model, two types:

- •Local sensitivity: change in result for given change in parameter.
- •Global sensitivity: how uncertainty in result is related to that of any input parameter.

Outbreak of an SIR type in finite population, e.g. influenza, measles, Rubella, Hepatitis A.

Scenario: introduce I_0 infectives into a population of $N-I_0$ susceptibles.

$$S \to I$$
 : rate $\lambda = \frac{\beta I}{N}$ /day, $I \to R$: rate μ /day

$$R_0 = \beta / \mu$$

The model can be described by the following system of equations:

$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \mu I$$

$$\frac{dR}{dt} = \mu I$$

$$R_0 = 2$$

$$I_0 = 100$$

$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \mu I$$

$$\frac{dR}{dt} = \mu I$$

$$R_0 = 2$$
$$I_0 = 100$$

$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \mu I$$

$$\frac{dR}{dt} = \mu I$$

$$R_0 = 1.5$$
 $I_0 = 100$

Cumulative number of infecteds: f

$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \mu I$$

$$\frac{dR}{dt} = \mu I$$

$$R_0 = 2$$

 $I_0 = 10$

We are interested in the number of individuals infected over the course of the epidemic, a.k.a. the final size, f, or attack rate, as it depends on I_0 and R_0 .

For a deterministic model,

$$1-f = (1-I_0/N) \exp(-R_0 f)$$

We are interested in the number of individuals infected over the course of the epidemic, a.k.a. the final size, f, or attack rate, as it depends on I_0 and R_0 . For a deterministic model,

$$1 - f = (1 - I_0 / N) \exp(-R_0 f)$$

Sensitivity to variation in R_o :

I ₀	R_0	f
100	1.25	544
100	1.5	671
100	2	828
100	3	948
100	4	982

We are interested in the number of individuals infected over the course of the epidemic, a.k.a. the final size, f, or attack rate, as it depends on I_0 and R_0 . For a deterministic model,

$$1-f = (1-I_0/N) \exp(-R_0 f)$$

Sensitivity to variation in I_0 :

I ₀	R_0	f
1	2	797
10	2	800
100	2	828
200	2	855
300	2	879

Local uncertainty

- •Local sensitivity looks at the change in the outcome of interest as params are varied one at a time.
- •In our model, final size depends on reproduction number, R_0 , and initial infectives, I_0 .

We can look at the sensitivity around R_0 =2, I_0 =100, say.

Doesn't tell us how different parameters combine to affect the result.

Latin Hypercube Sampling

- •If evaluation expensive, don't want to go through all values.
- •LHC is a method of picking a subset of points that 'span' the region. From previous example:

 R_0

10X10 cube: mean = 780, s.d. = 86

- •Each parameter value appears once and only once.
- •Can repeat the process to get further sets.

Monte Carlo Markov Chain

- •MCMC is a way of generating a sequence of parameter sets which appear to have come from distribution.
- •Each new set generated from previous one, hence 'chain', by a rule.

$$(x_1, x_2)_n \Longrightarrow (x_1, x_2)_{n+1}$$

Metropolis Algorithm

First, create a way of randomly picking a new set of params from the old. (must be symmetrical. E.g. Add normal deviate to each).

- •From last point, (x_1, x_2) , generate new point, (x_1^*, x_2^*)
- •Calculate A, where $A = p(x_1^*, x_2^*) / p(x_2, x_2)$
- •Get a random number, u, between [0,1].
- •If u<A, accept new point. Otherwise use old one again.

Stochastic and probabilistic models: likelihood

- •Stochastic models incorporate the randomness of the processes they represent, e.g. infection, recovery, death, etc.
- •Hence each run of the model will produce different results from the same parameters.

Consider an epidemic model: we want to know what values of β produce an observed final epidemic size.

Questions:

- •What is the 'best' value for β?
- •What range of values of β are acceptable?

Likelihood

Likelihood of data, given parameters

Probability that the observed data is generated by the model,

observed

given the parameters

By repeating for a range of β 's, we can generate a graph of likelihood against β .

The peak indicates the 'best' value, called the maximum likelihood estimator (MLE).

Log-Likelihood and confidence intervals

The shape of the log of the likelihood curve gives us the range of values of b that fit well.

If we measure down Q from top of the curve,

$$Q = \frac{1}{2} \chi_{0.05}^2(n)$$

This defines the 95% confidence for the parameter values.

Consider sampling a population to estimate the proportion seropositive for a malaria antigen. Assume that:

Individuals sampled = **N**

Individuals seropositive = **k**

Need to estimate the proportion seropositive **p**.

We use a binomial likelihood function:

$$L = \binom{N}{k} p^k \left(1 - p\right)^{N - k}$$

In general:

- more data => less uncertainty
- more data => narrower confidence intervals

Can depend on the choice of model, e.g. a badly chosen model will not be helped by more data.

Summary

- Looked at a number of ways to explore possible parameter values and
- Estimate the distribution and sensitivity of outcome variables.
- Another method for generating parameter set for analysis is through
- Monte Carlo Markov Chain algorithms. Very simple and robust algorithm in common use.
- Likelihood methods very powerful for finding parameter ranges corresponding to observed data.
- Calculating the likelihood becomes more difficult with more complicated data sets,
 e.g. incidence curves.
- The more data you have, the more accurate your parameter estimate.
- If the model's no good, you can still get a best fit, so check it's not nonsense.