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Aims of the session

• Understand the sources of uncertainty

• Understand the importance of communicating uncertainty

• Learn main methods for addressing model uncertainty
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Data Model Result

Raw data: incidence, 

serological data, etc.

or parameter values 

from other studies.

Deterministic or 

stochastic

Property or statistic of 

the system (Contact rate,

R0, etc.)

The nature of the problem
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Data Model Result

Data error

Stochastic or 

deterministic model

Uncertainty in result

?

Uncertainty
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Data Model Result

For a deterministic model, two types:

•Local sensitivity: change in result for given change in parameter.

•Global sensitivity: how uncertainty in result is related to that of 

      any input parameter. 

ix

Sensitivity
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Outbreak of an SIR type in finite population, e.g. influenza, measles, Rubella, 
Hepatitis A.

Scenario: introduce I0 infectives into a population of N-I0 susceptibles.

: rate                 /day,

         : rate  /day 

I

N


 =

0 /R  =

S I→

I R→

Model for illustration of parameter 
sensitivity
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The model can be described by the following system of equations:

dS I
S

dt N

dI I
S I

dt N

dR
I

dt



 
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= −

= −

=

R0 = 2

I0 = 100

Model for illustration of parameter 
sensitivity
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Model for illustration of parameter sensitivity
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dS I
S

dt N

dI I
S I

dt N

dR
I

dt
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Model for illustration of parameter sensitivity
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dS I
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dt N

dR
I

dt



 



= −

= −

=

R0 = 2

I0 = 10

Model for illustration of parameter sensitivity
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We are interested in the number of individuals infected over the course of the 
epidemic, a.k.a. the final size, f, or attack rate, as it depends on I0 and R0. 

For a deterministic model, 

0 01 (1 / )exp( )f I N R f− = − −

Model for illustration of parameter sensitivity
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We are interested in the number of individuals infected over the course of the 
epidemic, a.k.a. the final size, f, or attack rate, as it depends on I0 and R0. 
For a deterministic model, 

0 01 (1 / )exp( )f I N R f− = − −

I0 R0 f

100 1.25 544

100 1.5 671

100 2 828

100 3 948

100 4 982

Sensitivity to variation in R0:

Model for illustration of parameter sensitivity
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We are interested in the number of individuals infected over the course of the 
epidemic, a.k.a. the final size, f, or attack rate, as it depends on I0 and R0. 
For a deterministic model, 

0 01 (1 / )exp( )f I N R f− = − −

I0 R0 f

1 2 797

10 2 800

100 2 828

200 2 855

300 2 879

Sensitivity to variation in I0:

Model for illustration of parameter sensitivity
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•Local sensitivity looks at the change in the outcome of interest as params
 are varied one at a time. 
•In our model, final size depends on reproduction number, R0, and initial 
 infectives, I0.

We can look at the sensitivity around R0=2, I0=100, say.

0 2R = 0 100I =

Doesn’t tell us how different parameters combine to affect the result.

0I
0R

f f

Local uncertainty
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•If evaluation expensive, don’t want to go through all values.

•LHC is a method of picking a subset of points that ‘span’ the region. 

Latin Hypercube Sampling
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•Each parameter value appears once and only once. 
•Can repeat the process to get further sets. 

From previous example:
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Monte Carlo Markov Chain

First, create a way of randomly picking a new set of params from the old.
(must be symmetrical. E.g. Add normal deviate to each). 

•From last point, (x1,x2), generate new point, 

•Calculate A, where 

•Get a random number, u, between [0,1]. 

•If u<A, accept new point. Otherwise use old one again. 

•MCMC is a way of generating a sequence of parameter sets which appear to 
 have come from distribution. 
•Each new set generated from previous one, hence ‘chain’, by a rule. 

Metropolis Algorithm
1 2 1 2 1( , ) ( , )n nx x x x +

* *

1 2( , )x x

* *

1 2 2 2( , ) / ( , )A p x x p x x=

N.B. successive points are not independent! 16



•Stochastic models incorporate the randomness of the processes they represent,
  e.g. infection, recovery, death, etc.
•Hence each run of the model will produce different results from the same parameters.

Consider an epidemic model: we want to know what values of β produce an 
observed final epidemic size. 

Model
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Questions:
•What is the ‘best’ value for β?
•What range of values of β are acceptable?

Stochastic and probabilistic models: likelihood
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Likelihood of data,
given parameters 

Probability that the observed data is generated by the model, 
given the parameters

=

Model Many runs
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By repeating for a range of β’s, 
we can generate a graph of 
likelihood against β. 

̂

The peak indicates the ‘best’ value, called
the maximum likelihood estimator (MLE).

Likelihood

18



-10

-8

-6

-4

-2

0

2

1 1.5 2 2.5 3

Log-Likelihood and confidence intervals
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1
( )

2
Q n=

Q

The shape of the log of the likelihood curve gives us the range of values of b 
that fit well.
If we measure down Q from top of the curve,

ln( ( ))L 



This defines the 95% confidence for the parameter values.
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Uncertainty arising from data

Consider sampling a population to estimate the proportion seropositive 
for a malaria antigen. Assume that:

Individuals sampled = N

Individuals seropositive = k

Need to estimate the proportion seropositive p.

We use a binomial likelihood function:

20

( )1
N kk

N
L p p
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Uncertainty arising from data

21



Uncertainty arising from data
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Uncertainty arising from data
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Uncertainty arising from data
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Uncertainty arising from data
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Uncertainty arising from data
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Uncertainty arising from data
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Uncertainty arising from data

In general: 

• more data => less uncertainty

• more data => narrower confidence intervals

Can depend on the choice of model, e.g. a badly chosen 
model will not be helped by more data.
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Summary

• Looked at a number of ways to explore possible parameter values and 

• Estimate the distribution and sensitivity of outcome variables. 

• Another method for generating parameter set for analysis is through 

•  Monte Carlo Markov Chain algorithms. Very simple and robust algorithm in common 
use.  

• Likelihood methods very powerful for finding parameter ranges  corresponding to 
observed data. 

• Calculating the likelihood becomes more  difficult with more complicated data sets, 
e.g. incidence curves. 

• The more data you have, the more accurate your parameter estimate. 

• If the model’s no good, you can still get a best fit, so check it’s not nonsense. 
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